Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 480 vs GeForce GTX 560

Intro

The GeForce GTX 480 makes use of a 40 nm design. nVidia has clocked the core frequency at 700 MHz. The GDDR5 memory runs at a frequency of 924 MHz on this particular card. It features 480 SPUs as well as 60 TAUs and 48 Rasterization Operator Units.

Compare those specs to the GeForce GTX 560, which comes with a core clock speed of 810 MHz and a GDDR5 memory speed of 1001 MHz. It also features a 256-bit memory bus, and makes use of a 40 nm design. It is made up of 336 SPUs, 56 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 150 Watts
GeForce GTX 480 250 Watts
Difference: 100 Watts (67%)

Memory Bandwidth

In theory, the GeForce GTX 480 will be 38% faster than the GeForce GTX 560 overall, due to its greater bandwidth. (explain)

GeForce GTX 480 177408 MB/sec
GeForce GTX 560 128128 MB/sec
Difference: 49280 (38%)

Texel Rate

The GeForce GTX 560 should be a bit (approximately 8%) better at anisotropic filtering than the GeForce GTX 480. (explain)

GeForce GTX 560 45360 Mtexels/sec
GeForce GTX 480 42000 Mtexels/sec
Difference: 3360 (8%)

Pixel Rate

The GeForce GTX 480 is much (approximately 30%) more effective at full screen anti-aliasing than the GeForce GTX 560, and also should be capable of handling higher resolutions without slowing down too much. (explain)

GeForce GTX 480 33600 Mpixels/sec
GeForce GTX 560 25920 Mpixels/sec
Difference: 7680 (30%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 480

Amazon.com

GeForce GTX 560

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 480 GeForce GTX 560
Manufacturer nVidia nVidia
Year March 2010 May 2011
Code Name GF100 GF114
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.0 x16
Memory 1536 MB 1024 MB
Core Speed 700 MHz 810 MHz
Shader Speed 1401 MHz 1600 MHz
Memory Speed 924 MHz (3696 MHz effective) 1001 MHz (4004 MHz effective)
Unified Shaders 480 336
Texture Mapping Units 60 56
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 250 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 177408 MB/sec 128128 MB/sec
Texel Rate 42000 Mtexels/sec 45360 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 25920 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in MB per second) that can be moved over the external memory interface in one second. It is worked out by multiplying the interface width by its memory speed. If it uses DDR RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed per second. This figure is worked out by multiplying the total number of texture units by the core speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly record to its local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing