Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 480 vs GeForce GTX 560

Intro

The GeForce GTX 480 features a GPU clock speed of 700 MHz, and the 1536 MB of GDDR5 memory runs at 924 MHz through a 384-bit bus. It also is comprised of 480 SPUs, 60 Texture Address Units, and 48 ROPs.

Compare those specifications to the GeForce GTX 560, which has a GPU core clock speed of 810 MHz, and 1024 MB of GDDR5 RAM set to run at 1001 MHz through a 256-bit bus. It also is comprised of 336 SPUs, 56 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 150 Watts
GeForce GTX 480 250 Watts
Difference: 100 Watts (67%)

Memory Bandwidth

In theory, the GeForce GTX 480 should be 38% quicker than the GeForce GTX 560 overall, because of its greater data rate. (explain)

GeForce GTX 480 177408 MB/sec
GeForce GTX 560 128128 MB/sec
Difference: 49280 (38%)

Texel Rate

The GeForce GTX 560 will be just a bit (more or less 8%) faster with regards to texture filtering than the GeForce GTX 480. (explain)

GeForce GTX 560 45360 Mtexels/sec
GeForce GTX 480 42000 Mtexels/sec
Difference: 3360 (8%)

Pixel Rate

The GeForce GTX 480 will be much (about 30%) faster with regards to AA than the GeForce GTX 560, and will be able to handle higher resolutions while still performing well. (explain)

GeForce GTX 480 33600 Mpixels/sec
GeForce GTX 560 25920 Mpixels/sec
Difference: 7680 (30%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 480

Amazon.com

GeForce GTX 560

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 480 GeForce GTX 560
Manufacturer nVidia nVidia
Year March 2010 May 2011
Code Name GF100 GF114
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.0 x16
Memory 1536 MB 1024 MB
Core Speed 700 MHz 810 MHz
Shader Speed 1401 MHz 1600 MHz
Memory Speed 924 MHz (3696 MHz effective) 1001 MHz (4004 MHz effective)
Unified Shaders 480 336
Texture Mapping Units 60 56
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 250 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 177408 MB/sec 128128 MB/sec
Texel Rate 42000 Mtexels/sec 45360 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 25920 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (in units of MB per second) that can be transported across the external memory interface in one second. It is worked out by multiplying the card's interface width by its memory speed. If the card has DDR RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This figure is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing