Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 480 vs GeForce GTX 560

Intro

The GeForce GTX 480 has clock speeds of 700 MHz on the GPU, and 924 MHz on the 1536 MB of GDDR5 RAM. It features 480 SPUs along with 60 TAUs and 48 ROPs.

Compare all of that to the GeForce GTX 560, which makes use of a 40 nm design. nVidia has set the core frequency at 810 MHz. The GDDR5 memory works at a speed of 1001 MHz on this specific model. It features 336 SPUs along with 56 Texture Address Units and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 150 Watts
GeForce GTX 480 250 Watts
Difference: 100 Watts (67%)

Memory Bandwidth

Theoretically, the GeForce GTX 480 should be much faster than the GeForce GTX 560 in general. (explain)

GeForce GTX 480 177408 MB/sec
GeForce GTX 560 128128 MB/sec
Difference: 49280 (38%)

Texel Rate

The GeForce GTX 560 should be a bit (approximately 8%) more effective at texture filtering than the GeForce GTX 480. (explain)

GeForce GTX 560 45360 Mtexels/sec
GeForce GTX 480 42000 Mtexels/sec
Difference: 3360 (8%)

Pixel Rate

The GeForce GTX 480 should be a lot (more or less 30%) more effective at AA than the GeForce GTX 560, and will be able to handle higher screen resolutions better. (explain)

GeForce GTX 480 33600 Mpixels/sec
GeForce GTX 560 25920 Mpixels/sec
Difference: 7680 (30%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 480

Amazon.com

GeForce GTX 560

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 480 GeForce GTX 560
Manufacturer nVidia nVidia
Year March 2010 May 2011
Code Name GF100 GF114
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.0 x16
Memory 1536 MB 1024 MB
Core Speed 700 MHz 810 MHz
Shader Speed 1401 MHz 1600 MHz
Memory Speed 924 MHz (3696 MHz effective) 1001 MHz (4004 MHz effective)
Unified Shaders 480 336
Texture Mapping Units 60 56
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 250 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 177408 MB/sec 128128 MB/sec
Texel Rate 42000 Mtexels/sec 45360 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 25920 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of megabytes per second) that can be transferred across the external memory interface within a second. The number is calculated by multiplying the bus width by its memory clock speed. If the card has DDR memory, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total number of texture units by the core speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly record to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing