Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 480 vs GeForce GTX 560

Intro

The GeForce GTX 480 features a clock speed of 700 MHz and a GDDR5 memory speed of 924 MHz. It also features a 384-bit bus, and makes use of a 40 nm design. It is comprised of 480 SPUs, 60 Texture Address Units, and 48 Raster Operation Units.

Compare that to the GeForce GTX 560, which comes with core speeds of 810 MHz on the GPU, and 1001 MHz on the 1024 MB of GDDR5 RAM. It features 336 SPUs along with 56 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 150 Watts
GeForce GTX 480 250 Watts
Difference: 100 Watts (67%)

Memory Bandwidth

The GeForce GTX 480 should in theory be a lot faster than the GeForce GTX 560 in general. (explain)

GeForce GTX 480 177408 MB/sec
GeForce GTX 560 128128 MB/sec
Difference: 49280 (38%)

Texel Rate

The GeForce GTX 560 should be a bit (approximately 8%) faster with regards to anisotropic filtering than the GeForce GTX 480. (explain)

GeForce GTX 560 45360 Mtexels/sec
GeForce GTX 480 42000 Mtexels/sec
Difference: 3360 (8%)

Pixel Rate

The GeForce GTX 480 will be quite a bit (approximately 30%) faster with regards to full screen anti-aliasing than the GeForce GTX 560, and will be capable of handling higher resolutions without slowing down too much. (explain)

GeForce GTX 480 33600 Mpixels/sec
GeForce GTX 560 25920 Mpixels/sec
Difference: 7680 (30%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 480

Amazon.com

GeForce GTX 560

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 480 GeForce GTX 560
Manufacturer nVidia nVidia
Year March 2010 May 2011
Code Name GF100 GF114
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.0 x16
Memory 1536 MB 1024 MB
Core Speed 700 MHz 810 MHz
Shader Speed 1401 MHz 1600 MHz
Memory Speed 924 MHz (3696 MHz effective) 1001 MHz (4004 MHz effective)
Unified Shaders 480 336
Texture Mapping Units 60 56
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 250 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 177408 MB/sec 128128 MB/sec
Texel Rate 42000 Mtexels/sec 45360 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 25920 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (counted in megabytes per second) that can be transferred across the external memory interface within a second. It is worked out by multiplying the bus width by its memory speed. If the card has DDR RAM, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This figure is calculated by multiplying the total amount of texture units by the core speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card can possibly write to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree