Compare any two graphics cards:
VS

GeForce 9600 GT 512MB vs Radeon HD 6670 (OEM) 1GB

Intro

The GeForce 9600 GT 512MB uses a 65/55 nm design. nVidia has clocked the core speed at 650 MHz. The GDDR3 RAM is set to run at a speed of 900 MHz on this particular model. It features 64 SPUs as well as 32 TAUs and 16 ROPs.

Compare those specs to the Radeon HD 6670 (OEM) 1GB, which has a core clock speed of 800 MHz and a GDDR5 memory speed of 1000 MHz. It also features a 128-bit memory bus, and uses a 40 nm design. It features 480 SPUs, 24 TAUs, and 8 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6670 (OEM) 1GB 63 Watts
GeForce 9600 GT 512MB 95 Watts
Difference: 32 Watts (51%)

Memory Bandwidth

The Radeon HD 6670 (OEM) 1GB, in theory, should be just a bit faster than the GeForce 9600 GT 512MB overall. (explain)

Radeon HD 6670 (OEM) 1GB 64000 MB/sec
GeForce 9600 GT 512MB 57600 MB/sec
Difference: 6400 (11%)

Texel Rate

The GeForce 9600 GT 512MB should be a bit (approximately 8%) faster with regards to texture filtering than the Radeon HD 6670 (OEM) 1GB. (explain)

GeForce 9600 GT 512MB 20800 Mtexels/sec
Radeon HD 6670 (OEM) 1GB 19200 Mtexels/sec
Difference: 1600 (8%)

Pixel Rate

If running with a high resolution is important to you, then the GeForce 9600 GT 512MB is the winner, by a large margin. (explain)

GeForce 9600 GT 512MB 10400 Mpixels/sec
Radeon HD 6670 (OEM) 1GB 6400 Mpixels/sec
Difference: 4000 (63%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9600 GT 512MB

Amazon.com

Radeon HD 6670 (OEM) 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9600 GT 512MB Radeon HD 6670 (OEM) 1GB
Manufacturer nVidia AMD
Year Feb 2008 February 2011
Code Name G94a/b Turks
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe 2.1 x16
Memory 512 MB 1024 MB
Core Speed 650 MHz 800 MHz
Shader Speed 1625 MHz (N/A) MHz
Memory Speed 1800 MHz 4000 MHz
Unified Shaders 64 480
Texture Mapping Units 32 24
Render Output Units 16 8
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 95 watts 63 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 64000 MB/sec
Texel Rate 20800 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 10400 Mpixels/sec 6400 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (counted in MB per second) that can be moved across the external memory interface within a second. It's calculated by multiplying the bus width by its memory speed. In the case of DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This figure is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card can possibly write to its local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing