Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

A Question

Compare any two graphics cards:
VS

Radeon HD 3870 512MB vs Radeon HD 6670 (OEM) 1GB

Intro

The Radeon HD 3870 512MB features clock speeds of 775 MHz on the GPU, and 900 MHz on the 512 MB of GDDR3 RAM. It features 320(64x5) SPUs along with 16 Texture Address Units and 16 Rasterization Operator Units.

Compare that to the Radeon HD 6670 (OEM) 1GB, which comes with GPU core speed of 800 MHz, and 1024 MB of GDDR5 RAM running at 1000 MHz through a 128-bit bus. It also is made up of 480 Stream Processors, 24 TAUs, and 8 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6670 (OEM) 1GB 63 Watts
Radeon HD 3870 512MB 106 Watts
Difference: 43 Watts (68%)

Memory Bandwidth

As far as performance goes, the Radeon HD 6670 (OEM) 1GB should theoretically be a small bit superior to the Radeon HD 3870 512MB overall. (explain)

Radeon HD 6670 (OEM) 1GB 64000 MB/sec
Radeon HD 3870 512MB 57600 MB/sec
Difference: 6400 (11%)

Texel Rate

The Radeon HD 6670 (OEM) 1GB is a lot (about 55%) more effective at anisotropic filtering than the Radeon HD 3870 512MB. (explain)

Radeon HD 6670 (OEM) 1GB 19200 Mtexels/sec
Radeon HD 3870 512MB 12400 Mtexels/sec
Difference: 6800 (55%)

Pixel Rate

The Radeon HD 3870 512MB should be a lot (approximately 94%) better at full screen anti-aliasing than the Radeon HD 6670 (OEM) 1GB, and should be able to handle higher screen resolutions while still performing well. (explain)

Radeon HD 3870 512MB 12400 Mpixels/sec
Radeon HD 6670 (OEM) 1GB 6400 Mpixels/sec
Difference: 6000 (94%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 3870 512MB

Amazon.com

Radeon HD 6670 (OEM) 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 3870 512MB Radeon HD 6670 (OEM) 1GB
Manufacturer AMD AMD
Year Nov 19, 2007 February 2011
Code Name RV670 XT Turks
Fab Process 55 nm 40 nm
Bus PCIe 2.0 x16/AGP 8x PCIe 2.1 x16
Memory 512 MB 1024 MB
Core Speed 775 MHz 800 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1800 MHz 4000 MHz
Unified Shaders 320(64x5) 480
Texture Mapping Units 16 24
Render Output Units 16 8
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 106 watts 63 watts
Shader Model 4.1 5.0
Bandwidth 57600 MB/sec 64000 MB/sec
Texel Rate 12400 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 12400 Mpixels/sec 6400 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in megabytes per second) that can be moved across the external memory interface in one second. The number is calculated by multiplying the card's interface width by its memory speed. If the card has DDR memory, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This figure is worked out by multiplying the total number of texture units by the core clock speed of the chip. The higher the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]