Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9500 GT DDR2 vs Radeon HD 6670 (OEM)

Intro

The GeForce 9500 GT DDR2 makes use of a 65 nm design. nVidia has clocked the core frequency at 550 MHz. The DDR2 memory runs at a frequency of 500 MHz on this specific card. It features 32 SPUs as well as 16 Texture Address Units and 8 ROPs.

Compare all that to the Radeon HD 6670 (OEM), which has core clock speeds of 800 MHz on the GPU, and 1000 MHz on the 512 MB of GDDR5 RAM. It features 480 SPUs as well as 24 TAUs and 8 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
Radeon HD 6670 (OEM) 63 Watts
Difference: 13 Watts (26%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 6670 (OEM) will be 300% quicker than the GeForce 9500 GT DDR2 overall, due to its higher data rate. (explain)

Radeon HD 6670 (OEM) 64000 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 48000 (300%)

Texel Rate

The Radeon HD 6670 (OEM) will be much (about 118%) faster with regards to AF than the GeForce 9500 GT DDR2. (explain)

Radeon HD 6670 (OEM) 19200 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 10400 (118%)

Pixel Rate

If using high levels of AA is important to you, then the Radeon HD 6670 (OEM) is the winner, by far. (explain)

Radeon HD 6670 (OEM) 6400 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 2000 (45%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9500 GT DDR2

Amazon.com

Radeon HD 6670 (OEM)

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9500 GT DDR2 Radeon HD 6670 (OEM)
Manufacturer nVidia AMD
Year July 2008 February 2011
Code Name G96a Turks
Fab Process 65 nm 40 nm
Bus PCIe x16 2.0, PCI PCIe 2.1 x16
Memory 256 MB 512 MB
Core Speed 550 MHz 800 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 500 MHz (1000 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 32 480
Texture Mapping Units 16 24
Render Output Units 8 8
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 50 watts 63 watts
Shader Model 4.0 5.0
Bandwidth 16000 MB/sec 64000 MB/sec
Texel Rate 8800 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 6400 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of MB per second) that can be transported over the external memory interface in a second. It's calculated by multiplying the bus width by its memory clock speed. In the case of DDR type RAM, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This is worked out by multiplying the total amount of texture units by the core speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip could possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing