Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce 9500 GT DDR2 vs Radeon HD 6670 (OEM)


The GeForce 9500 GT DDR2 features a core clock speed of 550 MHz and a DDR2 memory speed of 500 MHz. It also makes use of a 128-bit memory bus, and uses a 65 nm design. It features 32 SPUs, 16 TAUs, and 8 ROPs.

Compare all that to the Radeon HD 6670 (OEM), which features clock speeds of 800 MHz on the GPU, and 1000 MHz on the 512 MB of GDDR5 memory. It features 480 SPUs along with 24 TAUs and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
Radeon HD 6670 (OEM) 63 Watts
Difference: 13 Watts (26%)

Memory Bandwidth

Performance-wise, the Radeon HD 6670 (OEM) should in theory be a lot superior to the GeForce 9500 GT DDR2 overall. (explain)

Radeon HD 6670 (OEM) 64000 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 48000 (300%)

Texel Rate

The Radeon HD 6670 (OEM) is quite a bit (more or less 118%) faster with regards to anisotropic filtering than the GeForce 9500 GT DDR2. (explain)

Radeon HD 6670 (OEM) 19200 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 10400 (118%)

Pixel Rate

If using a high resolution is important to you, then the Radeon HD 6670 (OEM) is a better choice, and very much so. (explain)

Radeon HD 6670 (OEM) 6400 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 2000 (45%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9500 GT DDR2

Radeon HD 6670 (OEM)

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce 9500 GT DDR2 Radeon HD 6670 (OEM)
Manufacturer nVidia AMD
Year July 2008 February 2011
Code Name G96a Turks
Memory 256 MB 512 MB
Core Speed 550 MHz 800 MHz
Memory Speed 1000 MHz 4000 MHz
Power (Max TDP) 50 watts 63 watts
Bandwidth 16000 MB/sec 64000 MB/sec
Texel Rate 8800 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 6400 Mpixels/sec
Unified Shaders 32 480
Texture Mapping Units 16 24
Render Output Units 8 8
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
Fab Process 65 nm 40 nm
Transistors 314 million 715 million
Bus PCIe x16 2.0, PCI PCIe 2.1 x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in megabytes per second) that can be moved past the external memory interface within a second. The number is worked out by multiplying the bus width by its memory speed. If the card has DDR type memory, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This figure is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to its local memory in one second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield