Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9500 GT DDR2 vs Radeon HD 6670 (OEM)

Intro

The GeForce 9500 GT DDR2 comes with a core clock speed of 550 MHz and a DDR2 memory speed of 500 MHz. It also uses a 128-bit memory bus, and uses a 65 nm design. It is made up of 32 SPUs, 16 TAUs, and 8 ROPs.

Compare that to the Radeon HD 6670 (OEM), which makes use of a 40 nm design. AMD has set the core speed at 800 MHz. The GDDR5 RAM works at a frequency of 1000 MHz on this card. It features 480 SPUs as well as 24 TAUs and 8 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
Radeon HD 6670 (OEM) 63 Watts
Difference: 13 Watts (26%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 6670 (OEM) should perform quite a bit faster than the GeForce 9500 GT DDR2 overall. (explain)

Radeon HD 6670 (OEM) 64000 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 48000 (300%)

Texel Rate

The Radeon HD 6670 (OEM) will be much (about 118%) faster with regards to texture filtering than the GeForce 9500 GT DDR2. (explain)

Radeon HD 6670 (OEM) 19200 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 10400 (118%)

Pixel Rate

The Radeon HD 6670 (OEM) is much (about 45%) better at anti-aliasing than the GeForce 9500 GT DDR2, and also should be able to handle higher resolutions without slowing down too much. (explain)

Radeon HD 6670 (OEM) 6400 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 2000 (45%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9500 GT DDR2

Amazon.com

Radeon HD 6670 (OEM)

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9500 GT DDR2 Radeon HD 6670 (OEM)
Manufacturer nVidia AMD
Year July 2008 February 2011
Code Name G96a Turks
Fab Process 65 nm 40 nm
Bus PCIe x16 2.0, PCI PCIe 2.1 x16
Memory 256 MB 512 MB
Core Speed 550 MHz 800 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 500 MHz (1000 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 32 480
Texture Mapping Units 16 24
Render Output Units 8 8
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 50 watts 63 watts
Shader Model 4.0 5.0
Bandwidth 16000 MB/sec 64000 MB/sec
Texel Rate 8800 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 6400 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (counted in megabytes per second) that can be transferred across the external memory interface in a second. It's calculated by multiplying the card's interface width by its memory clock speed. If the card has DDR type RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This figure is calculated by multiplying the total amount of texture units by the core speed of the chip. The better this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree