Compare any two graphics cards:
VS

Radeon HD 4870 1GB vs Radeon HD 6670 (OEM)

Intro

The Radeon HD 4870 1GB has a clock frequency of 750 MHz and a GDDR5 memory frequency of 900 MHz. It also uses a 256-bit memory bus, and uses a 55 nm design. It features 800(160x5) SPUs, 40 TAUs, and 16 Raster Operation Units.

Compare those specifications to the Radeon HD 6670 (OEM), which comes with core speeds of 800 MHz on the GPU, and 1000 MHz on the 512 MB of GDDR5 memory. It features 480 SPUs as well as 24 TAUs and 8 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6670 (OEM) 63 Watts
Radeon HD 4870 1GB 150 Watts
Difference: 87 Watts (138%)

Memory Bandwidth

The Radeon HD 4870 1GB should theoretically be much faster than the Radeon HD 6670 (OEM) in general. (explain)

Radeon HD 4870 1GB 115200 MB/sec
Radeon HD 6670 (OEM) 64000 MB/sec
Difference: 51200 (80%)

Texel Rate

The Radeon HD 4870 1GB will be much (approximately 56%) better at AF than the Radeon HD 6670 (OEM). (explain)

Radeon HD 4870 1GB 30000 Mtexels/sec
Radeon HD 6670 (OEM) 19200 Mtexels/sec
Difference: 10800 (56%)

Pixel Rate

If using a high screen resolution is important to you, then the Radeon HD 4870 1GB is the winner, by far. (explain)

Radeon HD 4870 1GB 12000 Mpixels/sec
Radeon HD 6670 (OEM) 6400 Mpixels/sec
Difference: 5600 (88%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 4870 1GB

Amazon.com

Radeon HD 6670 (OEM)

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 4870 1GB Radeon HD 6670 (OEM)
Manufacturer AMD AMD
Year Jun 25, 2008 February 2011
Code Name RV770 XT Turks
Fab Process 55 nm 40 nm
Bus PCIe 2.0 x16 PCIe 2.1 x16
Memory 1024 MB 512 MB
Core Speed 750 MHz 800 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 3600 MHz 4000 MHz
Unified Shaders 800(160x5) 480
Texture Mapping Units 40 24
Render Output Units 16 8
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 150 watts 63 watts
Shader Model 4.1 5.0
Bandwidth 115200 MB/sec 64000 MB/sec
Texel Rate 30000 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 12000 Mpixels/sec 6400 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (in units of megabytes per second) that can be moved across the external memory interface within a second. The number is worked out by multiplying the bus width by the speed of its memory. In the case of DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This is worked out by multiplying the total number of texture units by the core clock speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly record to the local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing