Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 4870 1GB vs Radeon HD 6670 (OEM)

Intro

The Radeon HD 4870 1GB has a GPU core clock speed of 750 MHz, and the 1024 MB of GDDR5 RAM runs at 900 MHz through a 256-bit bus. It also is made up of 800(160x5) SPUs, 40 Texture Address Units, and 16 Raster Operation Units.

Compare those specs to the Radeon HD 6670 (OEM), which has GPU clock speed of 800 MHz, and 512 MB of GDDR5 RAM set to run at 1000 MHz through a 128-bit bus. It also is made up of 480 SPUs, 24 Texture Address Units, and 8 Raster Operation Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6670 (OEM) 63 Watts
Radeon HD 4870 1GB 150 Watts
Difference: 87 Watts (138%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 4870 1GB should be much faster than the Radeon HD 6670 (OEM) overall. (explain)

Radeon HD 4870 1GB 115200 MB/sec
Radeon HD 6670 (OEM) 64000 MB/sec
Difference: 51200 (80%)

Texel Rate

The Radeon HD 4870 1GB is a lot (about 56%) faster with regards to anisotropic filtering than the Radeon HD 6670 (OEM). (explain)

Radeon HD 4870 1GB 30000 Mtexels/sec
Radeon HD 6670 (OEM) 19200 Mtexels/sec
Difference: 10800 (56%)

Pixel Rate

The Radeon HD 4870 1GB will be quite a bit (more or less 88%) faster with regards to anti-aliasing than the Radeon HD 6670 (OEM), and should be capable of handling higher screen resolutions without losing too much performance. (explain)

Radeon HD 4870 1GB 12000 Mpixels/sec
Radeon HD 6670 (OEM) 6400 Mpixels/sec
Difference: 5600 (88%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 4870 1GB

Amazon.com

Radeon HD 6670 (OEM)

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 4870 1GB Radeon HD 6670 (OEM)
Manufacturer AMD AMD
Year Jun 25, 2008 February 2011
Code Name RV770 XT Turks
Fab Process 55 nm 40 nm
Bus PCIe 2.0 x16 PCIe 2.1 x16
Memory 1024 MB 512 MB
Core Speed 750 MHz 800 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 900 MHz (3600 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 800(160x5) 480
Texture Mapping Units 40 24
Render Output Units 16 8
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 150 watts 63 watts
Shader Model 4.1 5.0
Bandwidth 115200 MB/sec 64000 MB/sec
Texel Rate 30000 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 12000 Mpixels/sec 6400 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of MB per second) that can be moved across the external memory interface in one second. The number is calculated by multiplying the card's interface width by its memory clock speed. If it uses DDR memory, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly record to the local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the number of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing