Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 440 1.5GB vs Radeon HD 6670 (OEM)

Intro

The GeForce GT 440 1.5GB comes with a core clock speed of 594 MHz and a GDDR3 memory speed of 900 MHz. It also uses a 192-bit bus, and makes use of a 40 nm design. It is comprised of 144 SPUs, 24 Texture Address Units, and 24 ROPs.

Compare all that to the Radeon HD 6670 (OEM), which makes use of a 40 nm design. AMD has clocked the core frequency at 800 MHz. The GDDR5 RAM works at a speed of 1000 MHz on this specific model. It features 480 SPUs as well as 24 Texture Address Units and 8 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 440 1.5GB 56 Watts
Radeon HD 6670 (OEM) 63 Watts
Difference: 7 Watts (13%)

Memory Bandwidth

Performance-wise, the Radeon HD 6670 (OEM) should theoretically be much superior to the GeForce GT 440 1.5GB overall. (explain)

Radeon HD 6670 (OEM) 64000 MB/sec
GeForce GT 440 1.5GB 43200 MB/sec
Difference: 20800 (48%)

Texel Rate

The Radeon HD 6670 (OEM) will be much (about 35%) better at texture filtering than the GeForce GT 440 1.5GB. (explain)

Radeon HD 6670 (OEM) 19200 Mtexels/sec
GeForce GT 440 1.5GB 14256 Mtexels/sec
Difference: 4944 (35%)

Pixel Rate

If using high levels of AA is important to you, then the GeForce GT 440 1.5GB is a better choice, by far. (explain)

GeForce GT 440 1.5GB 14256 Mpixels/sec
Radeon HD 6670 (OEM) 6400 Mpixels/sec
Difference: 7856 (123%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 440 1.5GB

Amazon.com

Radeon HD 6670 (OEM)

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 440 1.5GB Radeon HD 6670 (OEM)
Manufacturer nVidia AMD
Year October 2010 February 2011
Code Name GF106 Turks
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 1536 MB 512 MB
Core Speed 594 MHz 800 MHz
Shader Speed 1189 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 144 480
Texture Mapping Units 24 24
Render Output Units 24 8
Bus Type GDDR3 GDDR5
Bus Width 192-bit 128-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 56 watts 63 watts
Shader Model 5.0 5.0
Bandwidth 43200 MB/sec 64000 MB/sec
Texel Rate 14256 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 14256 Mpixels/sec 6400 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (measured in megabytes per second) that can be moved across the external memory interface in one second. It is calculated by multiplying the bus width by its memory speed. If it uses DDR RAM, it should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This figure is calculated by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly record to its local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing