Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 440 1.5GB vs Radeon HD 6670 (OEM)

Intro

The GeForce GT 440 1.5GB comes with a GPU core clock speed of 594 MHz, and the 1536 MB of GDDR3 RAM is set to run at 900 MHz through a 192-bit bus. It also is comprised of 144 SPUs, 24 TAUs, and 24 ROPs.

Compare those specs to the Radeon HD 6670 (OEM), which features a clock frequency of 800 MHz and a GDDR5 memory frequency of 1000 MHz. It also makes use of a 128-bit bus, and uses a 40 nm design. It is comprised of 480 SPUs, 24 Texture Address Units, and 8 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 440 1.5GB 56 Watts
Radeon HD 6670 (OEM) 63 Watts
Difference: 7 Watts (13%)

Memory Bandwidth

In theory, the Radeon HD 6670 (OEM) should be 48% quicker than the GeForce GT 440 1.5GB overall, because of its higher bandwidth. (explain)

Radeon HD 6670 (OEM) 64000 MB/sec
GeForce GT 440 1.5GB 43200 MB/sec
Difference: 20800 (48%)

Texel Rate

The Radeon HD 6670 (OEM) is much (about 35%) more effective at anisotropic filtering than the GeForce GT 440 1.5GB. (explain)

Radeon HD 6670 (OEM) 19200 Mtexels/sec
GeForce GT 440 1.5GB 14256 Mtexels/sec
Difference: 4944 (35%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce GT 440 1.5GB is the winner, by a large margin. (explain)

GeForce GT 440 1.5GB 14256 Mpixels/sec
Radeon HD 6670 (OEM) 6400 Mpixels/sec
Difference: 7856 (123%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GT 440 1.5GB

Amazon.com

Other US-based stores

Radeon HD 6670 (OEM)

Amazon.com

Other US-based stores

Specifications

Model GeForce GT 440 1.5GB Radeon HD 6670 (OEM)
Manufacturer nVidia ATi
Year October 2010 February 2011
Code Name GF106 Turks
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 1536 MB 512 MB
Core Speed 594 MHz 800 MHz
Shader Speed 1189 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 144 480
Texture Mapping Units 24 24
Render Output Units 24 8
Bus Type GDDR3 GDDR5
Bus Width 192-bit 128-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 56 watts 63 watts
Shader Model 5.0 5.0
Bandwidth 43200 MB/sec 64000 MB/sec
Texel Rate 14256 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 14256 Mpixels/sec 6400 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in megabytes per second) that can be moved across the external memory interface in one second. It is calculated by multiplying the bus width by its memory clock speed. If the card has DDR memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This number is worked out by multiplying the total texture units of the card by the core speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly record to the local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the number of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree