A Question

Compare any two graphics cards:
VS

GeForce 9800 GT 512MB vs Radeon HD 6450 (OEM) 1GB

Intro

The GeForce 9800 GT 512MB comes with a clock speed of 600 MHz and a GDDR3 memory speed of 900 MHz. It also features a 256-bit memory bus, and makes use of a 65/55 nm design. It features 112 SPUs, 56 Texture Address Units, and 16 ROPs.

Compare those specifications to the Radeon HD 6450 (OEM) 1GB, which makes use of a 40 nm design. AMD has clocked the core speed at 750 MHz. The GDDR5 RAM runs at a speed of 900 MHz on this model. It features 160 SPUs along with 8 Texture Address Units and 4 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6450 (OEM) 1GB 31 Watts
GeForce 9800 GT 512MB 105 Watts
Difference: 74 Watts (239%)

Memory Bandwidth

Theoretically speaking, the GeForce 9800 GT 512MB should be 100% quicker than the Radeon HD 6450 (OEM) 1GB overall, due to its higher data rate. (explain)

GeForce 9800 GT 512MB 57600 MB/sec
Radeon HD 6450 (OEM) 1GB 28800 MB/sec
Difference: 28800 (100%)

Texel Rate

The GeForce 9800 GT 512MB should be a lot (more or less 460%) faster with regards to texture filtering than the Radeon HD 6450 (OEM) 1GB. (explain)

GeForce 9800 GT 512MB 33600 Mtexels/sec
Radeon HD 6450 (OEM) 1GB 6000 Mtexels/sec
Difference: 27600 (460%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce 9800 GT 512MB is the winner, and very much so. (explain)

GeForce 9800 GT 512MB 9600 Mpixels/sec
Radeon HD 6450 (OEM) 1GB 3000 Mpixels/sec
Difference: 6600 (220%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GT 512MB

Amazon.com

Radeon HD 6450 (OEM) 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GT 512MB Radeon HD 6450 (OEM) 1GB
Manufacturer nVidia AMD
Year July 2008 February 2011
Code Name G92a/b Caicos
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe 2.1 x16
Memory 512 MB 1024 MB
Core Speed 600 MHz 750 MHz
Shader Speed 1500 MHz (N/A) MHz
Memory Speed 1800 MHz 3600 MHz
Unified Shaders 112 160
Texture Mapping Units 56 8
Render Output Units 16 4
Bus Type GDDR3 GDDR5
Bus Width 256-bit 64-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 105 watts 31 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 28800 MB/sec
Texel Rate 33600 Mtexels/sec 6000 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 3000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of megabytes per second) that can be transported past the external memory interface in one second. It's worked out by multiplying the bus width by the speed of its memory. If the card has DDR RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This is calculated by multiplying the total texture units of the card by the core speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly write to its local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing


[X]
[X]