Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 430 vs Radeon HD 6450 (OEM) 1GB

Intro

The GeForce GT 430 uses a 40 nm design. nVidia has clocked the core frequency at 700 MHz. The GDDR3 memory is set to run at a speed of 900 MHz on this model. It features 96 SPUs along with 16 TAUs and 4 Rasterization Operator Units.

Compare those specs to the Radeon HD 6450 (OEM) 1GB, which comes with clock speeds of 750 MHz on the GPU, and 900 MHz on the 1024 MB of GDDR5 RAM. It features 160 SPUs as well as 8 TAUs and 4 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6450 (OEM) 1GB 31 Watts
GeForce GT 430 60 Watts
Difference: 29 Watts (94%)

Memory Bandwidth

Both cards have the exact same bandwidth, so theoretically they should have identical performance. (explain)

Texel Rate

The GeForce GT 430 is a lot (approximately 87%) more effective at texture filtering than the Radeon HD 6450 (OEM) 1GB. (explain)

GeForce GT 430 11200 Mtexels/sec
Radeon HD 6450 (OEM) 1GB 6000 Mtexels/sec
Difference: 5200 (87%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon HD 6450 (OEM) 1GB is the winner, but it probably won't make a huge difference. (explain)

Radeon HD 6450 (OEM) 1GB 3000 Mpixels/sec
GeForce GT 430 2800 Mpixels/sec
Difference: 200 (7%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 430

Amazon.com

Radeon HD 6450 (OEM) 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 430 Radeon HD 6450 (OEM) 1GB
Manufacturer nVidia AMD
Year October 2010 February 2011
Code Name GF108 Caicos
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 512 MB 1024 MB
Core Speed 700 MHz 750 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 900 MHz (3600 MHz effective)
Unified Shaders 96 160
Texture Mapping Units 16 8
Render Output Units 4 4
Bus Type GDDR3 GDDR5
Bus Width 128-bit 64-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 60 watts 31 watts
Shader Model 5.0 5.0
Bandwidth 28800 MB/sec 28800 MB/sec
Texel Rate 11200 Mtexels/sec 6000 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 3000 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (counted in MB per second) that can be transported across the external memory interface in one second. It's worked out by multiplying the card's bus width by its memory clock speed. If it uses DDR RAM, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This number is calculated by multiplying the total texture units by the core speed of the chip. The higher the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly write to the local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing