Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 4850 1GB vs Radeon HD 5870

Intro

The Radeon HD 4850 1GB makes use of a 55 nm design. AMD has clocked the core frequency at 625 MHz. The GDDR4 RAM is set to run at a speed of 993 MHz on this specific card. It features 800(160x5) SPUs along with 40 TAUs and 16 ROPs.

Compare those specifications to the Radeon HD 5870, which features clock speeds of 850 MHz on the GPU, and 1200 MHz on the 1024 MB of GDDR5 memory. It features 1600(320x5) SPUs along with 80 TAUs and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4850 1GB 110 Watts
Radeon HD 5870 188 Watts
Difference: 78 Watts (71%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 5870 should be quite a bit faster than the Radeon HD 4850 1GB overall. (explain)

Radeon HD 5870 153600 MB/sec
Radeon HD 4850 1GB 63552 MB/sec
Difference: 90048 (142%)

Texel Rate

The Radeon HD 5870 is quite a bit (about 172%) faster with regards to texture filtering than the Radeon HD 4850 1GB. (explain)

Radeon HD 5870 68000 Mtexels/sec
Radeon HD 4850 1GB 25000 Mtexels/sec
Difference: 43000 (172%)

Pixel Rate

The Radeon HD 5870 will be a lot (about 172%) more effective at full screen anti-aliasing than the Radeon HD 4850 1GB, and also will be able to handle higher screen resolutions without slowing down too much. (explain)

Radeon HD 5870 27200 Mpixels/sec
Radeon HD 4850 1GB 10000 Mpixels/sec
Difference: 17200 (172%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 4850 1GB

Amazon.com

Radeon HD 5870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 4850 1GB Radeon HD 5870
Manufacturer AMD AMD
Year Jun 25, 2008 September 23, 2009
Code Name RV770 PRO Cypress XT
Fab Process 55 nm 40 nm
Bus PCIe 2.0 x16 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 625 MHz 850 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 993 MHz (1986 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 800(160x5) 1600(320x5)
Texture Mapping Units 40 80
Render Output Units 16 32
Bus Type GDDR4 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 3.2
Power (Max TDP) 110 watts 188 watts
Shader Model 4.1 5.0
Bandwidth 63552 MB/sec 153600 MB/sec
Texel Rate 25000 Mtexels/sec 68000 Mtexels/sec
Pixel Rate 10000 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (in units of megabytes per second) that can be transported over the external memory interface within a second. It's calculated by multiplying the card's bus width by its memory speed. If the card has DDR type RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This number is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly write to the local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree